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effects on calculated  hysteretic  response of  different 
inelastic  constitutive  models  available  in  nonlinear 
analysis  computer  codes. The hysteretic  response is 
required for  component life  prediction. 

The  structural analyses  were performed on  an IN 100 
alloy  double-edge wedge specimen that was thermally 
cycled in fluidized beds maintained at 316" and 1088" C 
with an immersion  time of 3  minutes in each bed. The 
specimen  geometry was modeled  with  20-node, 
isoparametric,  three-dimensional  elements.  Nonlinear 
analyses were performed by  using isotropic,  kinematic, 
and combined  isotropic-kinematic  hardening models and 
a combined  hardening  model in conjunction with a 
strain-hardening  creep law to account  for cyclic time- 
dependent  effects.  Monotonic  stress-strain  properties 
were  used for  the  isotropic  and  combined models, and 
saturated cyclic stress-strain  properties were  used for  the 
kinematic  model. An elastic analysis was also  performed 
as a baseline case. The results from  the  different 
constitutive  models and  the elastic  analysis were 
compared with respect to (1) predicted  hysteretic 
behavior, (2) computational  efficiency, (3) input  data 
requirements,  and (4) ease of use. 

Analytical Procedure 
Stresses,  total  strains, and inelastic  strains were 

calculated  for  a  double-edge wedge specimen  of IN 100 
alloy that was thermally cycled in fluidized beds 
maintained at 316" and 1088" C with'an  immersion  time 
of  3  minutes in each  bed. The analytical  conditions and 
methods  are discussed in this  section. 

Input for Analyses 

The specimen geometry,  material  properties,  and 
thermal  loading that were  used as  input to the  structural 
analyses are described  here. 

Geometry. -The geometry  of the double-edge wedge 
specimen  is illustrated  in  figure 1. To be  consistent with 
the  structural analyses  of  references  9 and 12, the leading- 
edge and trailing-edge  radii were squared  off to 1.02- and 
1.53-millimeter lengths, respectively, for  the finite- 
element  model.  Otherwise the finite-element  model 
duplicated the geometry  exactly. 

Material properties. -The physical properties  of  the 
IN 100 alloy are presented  in table I. Mean  thermal 
coefficient of expansion data were obtained  from 
reference 9; these values  were converted to instantaneous 
coefficients  of  thermal  expansion for  input  into  the 
MARC  program.  The  modulus  of  elasticity was 
determined from  monotonic  stress-strain  tests  of tensile 
specimens.  Cyclic stress-strain  curves were obtained by 
using the single-specimen incremental step  procedure  and 
equipment described in reference 19. A typical cyclic 
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TABLE I .  - I N  100 ALLOY  PHYSICAL  PROPERTIES 

Temper  a- 
t ure, 

"C 

316 
3 7 1  
427 
4 82 
538 
593 
649 
7 04 
760 
8 16 
87 1 
927 
982 

1038 
1093 

Modulus o f  
e la s t i c i ty ,  

M N / J  

1 9 3 ~ 1 0 ~  
190 
186 
183 
179 
176 
172 
168 
163 
157 
152 
145 
139 
133 
127 

Mean coefficient o f  
thermal  expansion, 

m/m/ O C 

1 3 . 1 ~ 1 0 ' ~  
13.3 
13.5 
13.7 , 

13.9 
14 .O 
14.4 
14.6 
14.9 
15.4 
15.8 
16.4 
16.7 
17.5 
18.2 

~~ 

stress-strain  curve, with the loci of  the  curve  tips 
represented by an exponential  equation, is illustrated in 
figure 2. Also shown for comparison in figure  2 is a 
monotonic  stress-strain  curve  represented by an 
exponential equation.  Short-time cyclic creep  tests were 
conducted  on  IN 100 specimens  by  using the  procedures 
and facilities described in  reference 20. Preprocessor 
programs  expressed both  the cyclic stress-strain and creep 
data  as  functional relations in exponential form.  These 
equations were incorporated  into  MARC by means of 
user subroutines.  The  constants  of  the cyclic and 
monotonic  stress-strain  equations  are given  in table I1 for 
various  temperatures.  The  constants  of  the cyclic creep 
equations  are given  in table 111 for  various  temperatures. 
The negative  exponent  on the stress term at 649" C in 
table I11 is due  to  extrapolation of  the  creep  equation 
below the  temperature  range of  the  data (800" to 
1100" C);  this is not  considered  a significant anomaly 
because of the low  creep rate  at this  temperature. 

Thermal loading. -The transient  temperature  loading 
on  the double-edge wedges  was determined from 
thermocouple  data.  The location  of  the  thermocouples at 
the wedge cross  section is shown  in figure 3.  The 
thermocouple  outputs were cross  plotted to give 
temperatures of  the  midchord  at  the midspan at various 
time  increments after immersion into  the fluidized beds; 
these data  are presented in figure 3.  It was assumed that 
there was no  temperature  gradient  through  the thickness 
of  the wedge. Another set of  thermocouple  data were 
taken with five thermocouples  mounted  along  the  leading 
edge  over  half the  span. These data revealed a 
longitudinal  (along  the  span  of  the  specimen) 
temperature  gradient  that varied  with the  different  time 



TABLE 11. - It 
STRAIN 

remper a- 
u = K (  t u r e ,  

Cyc 1 i 

O C  

K 

3 16 
427 

1005 

777  649 
869  538 
944 

157  1093 
361  982 
528  87  1 
665  760 

~. 

100 ALLOY  STRESS- 
PROPERTIES 

,a*b Monotonic,bsc 
0 EP)n u = C(10 Ep)m 

n 

0.078 731 0.046 

m C 

.147 

.187 676 

.236 255  .146 

.297  173  .146 

a ~ o c u s  of  c y c l i c   c u r v e   t i p s   ( f i g .   2 ) .  
b s t r e s s  u i n  megapascals; p l a s t i c  

C N o t   a p p l i c a b l e   f o r   l e s s   t h a n  
s t r a i n   i n   p e r c e n t .  

0.02 percent .  

TABLE 111. - I N  100 ALLOY 
CREEP PROPERTIES 

Tempera- . Creep   ra te ,a  
t u r e ,  = A ( 0 / 6 . 8 9 5 ) ~ ( t ) ~ ,  

O C  pe rcen t /m in  

A n m 

649 -1.088 -0.806 0.00 16 1 
7 60 

- -634 2.103 -00058  1093 
"654 2.172 -00010 982 
-.736 1.709 ,00012 87  1 
- ,881  -717 -00062 

a s t r e s s  (I i n  megapascals;   t ime 
t i n  minutes.  

increments. A least-squares best fit parabola was 
determined for each time  increment and is presented in 
table IV. This  parabolic  temperature  variation  along  the 
span was assumed  over the  complete  chord of the wedge. 
Details of the installation and  procedure  are given in 
reference 7. 

The  temperatures at  the  midspan were determined 
from  the  appropriate plot  in  figure 3. For locations  other 
than midspan the  temperatures were determined  by using 
the  midspan  temperature  modified  by  the  values given in 
table IV. Therefore by  using figure 3 and  table IV the 
temperature  distribution at  any point  of the wedge  was 
determined. 

A preprocessor program converted the  thermal  loading 
data  from  the wedge specimen into  the  form of sixth- 
order polynomial  equations. A subroutine  that was 
inserted into  MARC  interpolated  from these  equations 
for  the local temperatures at  the Gaussian  integration 
points of the finite-element  model. 

Methods of Analysis 

Stress and total-plastic-creep  strain  distributions in the 
wedge  specimens  were calculated from  the  MARC 
nonlinear,   f inite-element  computer  program. 
Computations were performed  for 34 time  increments (17 
heating, 17 cooling) into which the  thermal cycle was 
subdivided, as shown in figure 3. The analyses were 
continued  until  reasonably  stable  stress-strain hysteresis 
loops were obtained or, if still unstable, were terminated 
after  three cycles of  analysis. 

Plasticity  computations were based on incremental 
plasticity theory using the  von Mises  yield criterion and 
normality flow rule. The yield surface  under reversed 
loading was determined  from  the  stress-strain  properties 
and  the selected hardening  model.  Three  hardening 
models available in MARC (isotropic,  kinematic, and 
combined  isotropic-kinematic) were  selected for 
evaluation.  Monotonic  stress-strain  properties were  used 
in conjunction with the  isotropic  and  combined  models 
because of  their initial instability.  Saturated cyclic stress- 
strain  properties were  used for  the  stable  kinematic 
model. A bilinear representation  of  the cyclic stress-strain 
curve, as shown in figure 2, was applied to the  kinematic 
hardening  model. The slope  of  the  kinematic  model was 
determined  from energy considerations so that  the  strain 
energy,  as  indicated by the enclosed area, would be 
identical with that of the  actual cyclic stress-strain  curve. 
Creep  effects  during the cycle were considered  for one 
case  involving the  combined  model by imposing four 
30-second hold  times  during  heating  and  two 6-second 
hold times at  the  start of the cooling part of the cycle. 
These  intervals were selected because the  combination  of 
temperatures  and stresses indicated  a possibility of the 
occurrence  of  significant  creep at these  times in the 
thermal  transient.  The  creep  computations utilized the 
cyclic creep data in conjunction with a  strain-hardening 
rule. A subroutine  that was inserted into  the  MARC 
program in the  form  of yield strengths  and  work- 
hardening  slopes  as  functions  of  temperature was  used to 
determine  the  stress-strain  properties  for  the local 
temperatures  at  the  Gaussian  integration  points. 
Similarly the creep  properties  and laws  were coded into 
another user subroutine  that was  used to  obtain  the creep 
strains at  the  integration points. 

Outputs  from  the  program were the effective, normal, 
and  shear  stresses,  the  equivalent  total  and  plastic  strains, 
the  normal  and  shear  total  and plastic  strains,  and  the 
nodal  displacements.  Stress and  strain  output were  given 
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T A B L E   I V .  - T E R E R A l U R E   V A R I A T I O N  ALONG  SPAN 

[T,,, = Tx,mS (Az2 + B z  + C), where Tx,Z i s   t h e   t e m p e r a t u r e   a t  
any x,z coord inate   (see   f ig .  4 ) ,  TXsmS i s  the  temperature 
a t   t h e  x coordinate  at   midspan,  and z i s   t h e  span coordi -  
nate; a l l  temperatures i n  O F  (F = 9/5 C + 32) and a l l  x and 
z coordinates i n  inches.] 

T i  me 
ncrement , 

sec 

0 
3 
6 
9 

12 
15 
30 
45 
60 
75 
90 

105 
120 
135 
150 
165 
180 

T H e a t i n g  bed 

A 

,O -00870 
.0440 1 
.03739 
.03688 
.03806 
.03695 
.02758 
.O 1769 
.O 1432 
.O 1006 
.00803 
.00557 
.00627 
.00440 
.0037 1 
.00297 
.00262 

B 

0.0517 
- 2614 
- .222 1 
-.2191 
- -226 1 
- .2 195 -. 1638 
-.lo51 
- -08506 
- .05978 
- -04948 
- -033 11 
- -03722 
- .026 14 
- -02205 
- -0 1762 
- -01553 

for  the  Gaussian  integration  points. To prevent excessive 
generation of computer  printout,  the  output was 
restricted to high-strain regions of  the model. Contour 
plots of effective  stress,  longitudinal  stress and  total 
strain, equivalent total, plastic, and creep strain,  and 
temperature were obtained at  the  time increments  of 
maximum and  minimum  total  strain in the cycle. 

Finite-Element Model 
The finite-element  model is illustrated in figure 4. 

Because of  symmetry  only  one-fourth of  the wedge 
specimen needed to be modeled;  this  model was bounded 
by the  surface  and  intersecting  midchord  and  midspan 
planes  of  symmetry. The element used  was a 20-node, 
isoparametric,  three-dimensional block  with 8 corner 
nodes  and 12 edge  midpoint  nodes.  This  element  had 27 
Gaussian  integration  points.  The  model  consisted  of 36 
of these elements  with a total of 315 nodes  and 778 
unsuppressed degrees of  freedom. 

All nodes  initially on  the  midspan  and  midchord faces 
of  the model were constrained to lie on  the  midspan  and 
midchord  planes, respectively. In  addition,  one  node  at 
the leading  edge was constrained  chordwise  (leading to 
trailing  edge) in order  to prevent  rigid-body motion in 
that direction. 

1 
C 

0.9205 
1.389 1 
1.3290 
1.3372 
1.3344 
1.3300 
1.2504 
1.1630 
1.1324 
1.0934 
1.079 1 
1.0528 
1.057 1 
1.04  15 
1.0357 
1.0285 
1.0243 

Cool ing bed 
~~ ~ ~ 

A 

-0 -00666 
- -0 1775 
- -02384 
- .02548 
- -0273 1 
- .02889 
- -03047 
- .03 14 1 
- .03442 
- .03265 
- .02867 
- .02445 
- -02276 
- .O 1876 
- .01533 
- .O 1278 
-.01212 

B 

1.03957 
.lo55 
.1416 
.15 14 
.1622 
.17  16 
.1810 
.1866 
.2044 
.1939 
.1703 
.1452 
.1352 
.1142 
.09  107 
.07593 
.07 198 

- 
C 

0.9427 
.8447 
.79 1 1 
.7786 
.7622 
.7480 
.7338 
.7224 
.6905 
.7093 
.7440 
.7843 
.7981 
.8323 
.8622 
.8832 
.8876 

Results and Discussion 
The results of  the  MARC  nonlinear  and elastic 

analyses of a  thermally cycled double-edge wedge 
specimen of IN 100 alloy are discussed herein.  Analytical 
results  are  presented for  each  inelastic  constitutive  model 
(combined,  combined with creep,  isotropic,  and 
kinematic) and  from  the elastic  analysis.  Comparisons 
are  made  among  these  different stress-strain  behavior 
relations. The discussion is  based primarily on  the 
analytical  results at  the  location in the specimen  where 
the  maximum  total  strain  range was computed  during  the 
cycle. This  location  (henceforth, called the critical 
location)  occurred in all the analytical cases at  the leading 
edge at a quarter  of  the specimen  span  from  either  end; 
this  location is  in agreement with experimental  crack 
initiation  data  for  the wedge specimens that  are reported 
in reference 21. The stress-strain  results discussed  below 
for  the  critical  location were actually  computed at  the 
closest Gaussian  integration  point, which  was 0.056 
centimeter from  the  surface  at  the  quarter  span. 

Evaluation of Models 
The metal temperature cycle is presented in figure 5 .  

The  temperature at the critical  location varied from 
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343" C at the  start  of  the cycle to 1077" C at  the  end  of 
the heating  immersion.  This  temperature  spectrum 
applied to  all  of the elastic and  nonlinear  analysis cycles 
since the critical  location  did not change. The stress- 
strain  solutions at  the critical  location from  the  MARC 
elastic and nonlinear  analyses are  summarized in figures  6 
to 9 as  functions  of  the  load-time  increments. All stresses 
and strains  in  these  figures were effective or equivalent 
values that were computed  as  positive  numbers. 
However,  in order  to  later  construct stress-strain 
hysteresis loops,  the stresses and  total  strains were 
assigned positive or negative signs depending on  the signs 
of the highest magnitude  principal stresses or strains. 

Elastic. -Figures  6(a)  and  (b)  show  the  variations in 
stress and  total  strain, respectively. Stresses and  strains 
were compressive  during the  heating  part  of  the cycle, 
with the minimum values occurring  after 30 seconds of 
heating  (increment 7). The stresses and  strains were 
tensile during  cooling, with the  maximum values 
occurring after 9  seconds  of  cooling  (increment 21). 

Combined. -Figure 7 shows the results from  the 
nonlinear  analysis  using  the  combined  isotropic- 
kinematic  hardening  model.  This  analysis was terminated 
before  completion  of  the  second cycle when it became 
apparent  that  the stress-strain  state  had  stabilized. 
Stabilization is demonstrated in figure 7(c), where it is 
shown that all of the plastic  straining  took  place  during 
the first  60  seconds  of  heating  (increments  1 to 9)  and  that 
there was no further plastic  flow  thereafter.  As  in  the 
elastic analysis the  total  strains,  but  not  stresses, were 
minimum after 30 seconds  of  heating  (increments 7 and 
41) and  maximum  after  9  seconds of cooling  (increments 
21 and 55) .  

Combined-creep. -Figure 8 shows the results of the 
nonlinear  analysis using the  combined  model with creep. 
The analysis was terminated  during  the  third cycle 
because  of  computer  problems.  Figures 8(c) and (d) 
illustrate  the  destabilization  of  the  problem by 
interposing  creep  hold  times at discrete  intervals in the 
thermal  transients.  The  equivalent  plastic  strains 
decreased (fig. 8(c)) while the equivalent  creep  strains 
increased (fig. 8(d))  although at diminished  rates  during 
cycling. Only  slight  changes in the  maximum  creep  strains 
were obtained with further cycling. In  absolute  terms  the 
plastic and creep  strains were always  compressive  during 
the  thermal cycling; therefore  the  maximum equivalent 
creep  strains in figure  8(d)  were  actually  minimum 
absolute values and  the  minimum equivalent  creep  strains 
were maximum  absolute  values.  Since  the  automatic 
creep option  in  MARC  creates  additional increments 
during  creep  hold  times,  the  increment  numbers  in fig- 
ure 8 are  not  comparable  to  those  in figures 5 to 7 and 9. 
The  total  strains (fig. 8(b)) reached  their  minimum values 
at  the  end of the creep  hold  time for 30  seconds of heating 
(increments  19, 107, and 193) and  their  maximum values 

at  the beginning of  the  hold  time  for 9  seconds of cooling 
(increments 71 and 157). 

Isotropic. -The  isotropic  hardening model gave 
essentially the  same  stress-strain  solutions as were 
obtained with the  combined model  without  creep.  This 
similarity  in  results was due  to  the use of the  same 
monotonic  stress-strain  properties and  the absence of 
plastic  strain reversal during cycling. Therefore  the 
discussion of results for  the combined  model  without 
creep is also  applicable to isotropic  hardening,  and  the 
latter will not  be discussed separately. 

Kinematic. -The results of the  nonlinear analysis using 
the  kinematic  hardening  model are given in figure 9. 
These  results  show that  an  unstable stress-strain state still 
existed after  three  analytical cycles. This  instability is 
most clearly shown  in  figure 9(c), where the maximum 
and minimum  equivalent  plastic  strains for each cycle 
decrease as  the cycling proceeds  (or  increase  in an 
absolute  sense  since  the  plastic  strains  were 
predominantly compressive). As in the elastic and  other 
nonlinear  analyses, the minimum  total  strains  occurred 
after 30 seconds of heating  (increments 7,41,  and 75) and 
the  maximum  total  strains  occurred  after  9  seconds of 
cooling  (increments 21, 5 5 ,  and 89). The differences in 
the  stress-strain  states between  cycles  were relatively 
minor in terms of stress (fig. 9(a)) and  total  strain (fig. 
9(b)) as  compared with the  plastic  strain  changes  shown 
in figure 9(c)). 

Comparison of Models 

Comparisons  are  made in figures 10 to 13 of the stress- 
strain  solutions  for  the  second cycle from  the  nonlinear 
anaIyses for  each  constitutive  model.  The elastic analysis 
results are also  presented in these  comparisons  as  a 
baseline case. 

In  figure 10 the stress-strain hysteresis loops  for  each 
of the  nonlinear  analyses are  compared with the elastic 
response. The stresses and  total  strains in figure 10 were, 
as discussed previously,  effective or equivalent  values 
that were  assigned signs on the basis of  whether the 
principal stresses or strains were predominantly tensile or 
compressive. These  results suggest that  the  total  strain 
range was not  appreciably  affected by the choice  of 
constitutive  model or the type of stress-strain data  and 
that  an elastic analysis was adequate  for  the  computation 
of the  total  strain  range.  The  major differences between 
the elastic and  nonlinear hysteresis loops were in the 
stress levels, which shifted  in  the  tensile  direction  under 
inelastic  straining,  and  the enclosed areas  within the 
loops. A measure  of  the  strain energy or inelastic  work is 
the  area of the hysteresis loop.  The widest hysteresis 
loop,  and  therefore  the most  inelastic  work, is shown by 
the kinematic  hardening  model  in  figure 10(d); the next 
widest, by the combined-creep  model  in  figure lO(c). 
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Since  there was no  further plastic  straining  during  the 
second cycle  when using  the  combined  hardening  model 
without  creep,  there was no inelastic  work, and as 
expected  the  areas  of the  nonlinear  and  elastic  hysteresis 
loops  shown in figure 10(a) were approximately  the  same. 

Some  of the second-cycle parameters  are  compared  for 
the  four analyses  in  figure 11. Significant  differences  in 
the mean  stresses of the elastic  and  nonlinear  hysteresis 
loops  are  apparent in figure  1 l(a).  The greatest  stress 
shift was exhibited by the  combined  hardening  model;  the 
introduction  of  creep  hold  times  during  the  thermal 
transients  had  only  a  slight  effect on  the mean  stress 
under  combined  hardening.  Figure  1 I@) confirms  the 
previous  observation  based on  the hysteresis  loops  of 
figure  10 that  the computed total  strain  range was 
essentially  constant for all  of the analyses; even the 
largest  total  strain  range  (kinematic) was only 5 percent 
greater than  the smallest  (combined-creep). The selection 
of  constitutive model had  a major effect  on the computed 
inelastic  strain  range  (fig. ll(c)).  The greatest  plastic 
strain  change was exhibited by the  kinematic  model, 
while the  combined model without  creep  showed  no 
change  during  the  second cycle. The inclusion of creep 
effects with the  combined  model  caused  creep  strain 
ratchetting  and  a  relatively  smaller  change in plastic 
strain;  the net  inelastic  strain  change  would  be  the 
difference  of  these since the  equivalent  plastic  strains 
decreased in figure 8(c) and  the equivalent  creep  strains 
increased in figure  8(d) with the  number  of cycles. Figure 
1  l(d) compares  the  inelastic  work done  during  the second 
cycle; the work was calculated by summing the  product 
of  the  effective  stress  and the incremental  equivalent 
inelastic  strain at  the critical  location for each  increment. 
The kinematic  model  showed about two and one-half 
times  the  amount of work as was done with the 
combined-creep  model.  No  plastic  work was performed 
with the  combined  model  without  creep  since  there was 
no plastic flow during  the  second cycle. 

One  of  the  most  important  considerations  in  deciding 
whether to perform  a  nonlinear  analysis or how many 
cycles to continue  it is the  computing  time.  Figure ll(e) 
summarizes  the  computing  time  required  per cycle for 
each of the  analyses. As expected,  the  elastic  analysis was 
the most  rapid  because  the  constant  reassembly  and 
solution of the  stiffness  matrix  could be avoided  during 
incremental  loading;  also  the  elastic  analysis  only  had to 
be  performed for  one cycle. The nonlinear  analyses using 
the  combined  and  kinematic  hardening  models  required 
40 to 45 minutes of computing  time per cycle on  the IBM 
370 system as  compared with 8 minutes for  the elastic 
analysis. The  addition of  creep  hold  times  amounting to 
about 37 percent of the  total cycle time  increased  the 
computing  time by 50 percent. 

Temperature,  stress,  and  strain  distributions  along  the 
midchord  plane are presented in figure 12 after 30 
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seconds  of  heating and in  figure 13 after 9 seconds of 
cooling when the  total  strains were minimum and 
maximum,  respectively. The highest  temperatures  during 
heating  (fig.  12(a)) and  the lowest temperatures  during 
cooling (fig. 13(a))  were  reached at  the leading edge. This 
temperature  distribution  resulted  in  the  leading  edge 
having  the  highest  longitudinal  compressive  stresses 
during  heating  (fig. 12(c)) and  the highest longitudinal 
tensile  stresses  during  cooling  (fig. 13(c)). In figures  12(d) 
and 13(d) the largest  equivalent total  strains  are shown on 
the  leading  edge at  about  the center  of  the  finite-element 
model  (quarter  span),  where  the  critical  location was 
determined. The maximum  equivalent  plastic  strains were 
also at  the leading  edge  but  somewhat below quarter 
span, as  shown in figures 12(e) and 13(e). However, the 
creep  strains  from  the  combined-creep  model  analysis 
were as large or larger on  the trailing edge. 

Of the  nonlinear  models  considered in this  study,  the 
isotropic  model  and  the  combined  model  without  creep 
were the  easiest to use and required  the  least  inelastic 
material  property data. Interposing  creep  hold  times 
during  the  thermal  transients  made  the  analysis  difficult 
to perform  because  it  involved  constant  switching 
between  plastic and creep  computations, caused 
bookkeeping  problems,  and  required  periodic 
reprogramming  of user subroutines to account for  the 
creep  increments. The results  of  this  study  indicate that, 
except for  total  strain  range,  structural parameters used 
in low-cycle-fatigue  damage  models  such  as  mean  stress, 
inelastic  strain  range, and inelastic  work are sensitive to 
the  constitutive  model used in  the  nonlinear  analysis. 

Summary of Results 
Three-dimensional  finite-element  analyses were 

performed on  a thermally  cycled,  double-edge wedge 
specimen of IN 100 alloy in order to evaluate  different 
inelastic  constitutive  models  available in the  MARC 
nonlinear,  structural  computer  program.  The  major 
results of this study were as  follows: 

1. Of the  structural analysis  parameters used in low- 
cycle-fatigue  damage  models  only  the  total  strain  range 
was relatively  insensitive to the  choice of inelastic 
constitutive  model. Other  parameters  such  as  inelastic 
strain  range,  mean  stress,  and  inelastic work were 
significantly  affected by the  constitutive  model. 

2. Elastic  analysis was adequate  for  the  calculation  of 
the  maximum total  strain  range.  The  elastic  analysis was 
also  able to determine  the  critical  location for crack 
initiation  and the cycle times when the  total  strain was 
maximum or  minimum. Maximum  total  strain  ranges 
computed  from the elastic and nonlinear  analyses  agreed 
within 5 percent. 



3. The use of  the isotropic and  combined isotropic- 
kinematic  hardening  models  without  creep  resulted in 
stable  stress-strain  hysteresis  loops after  the first cycle. 
The similarity  in  results with these two  models was due  to 
the use of  the  same stress-strain  properties and  the 
absence of plastic strain reversal.  Creep  analysis in 
conjunction with the  combined  model  destabilized  the 
hysteretic  behavior and  caused  creep ratchetting and 
relatively small  plastic  straining on succeeding cycles. 

4. The largest  inelastic strain  range  and  most inelastic 
work per cycle occurred with the  kinematic  hardening 
model.  The  combined  model  showed  no  inelastic  work 
after  initial  heating on  the first cycle. 

5 .  Inelastic  straining  caused the stress-strain hysteresis 
loops  to  shift in the tensile  stress  direction.  Mean  stress 
levels varied considerably with the constitutive  model 
used  in the  nonlinear  analysis.  The  greatest  stress  shift 
was exhibited by the  combined  hardening  model.  Creep 
effects  had  only a slight influence on  the  mean stress. 

6. The  elastic-plastic  analyses used about five or six 
times the  computing  time per cycle that was required by 
the elastic  analysis.  Also the elastic  analysis  only  had to 
be performed  for  one cycle. Inclusion  of  creep  effects in 
the  nonlinear  analysis  substantially  increased  the  comput- 
ing time,  as well as  the difficulty  in  performing the 
analysis, because of the  constant switching between 
plasticity and creep  computations. 

7. Of the  nonlinear  analysis  methods  considered  in  this 
study, the isotropic and  combined  hardening models 
without  creep were the easiest to use and required the 
least inelastic material property  data. 

Lewis Research Center 
National  Aeronautics  and  Space  Administration 
Cleveland, Ohio, April 5, 1982 
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Figure 3. - Temperature  at  midspan a t  various  t imes  after  immersion  into  f luidized beds. 
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